Mgr. Karol Bartkiewicz, Ph.D.

Publikace

ResearcherID

[1] Adam Miranowicz, Karol Bartkiewicz, Neill Lambert, Yueh-Nan Chen, and Franco
Nori.
Nonclassicality quantified by standard entanglement potentials can be
increased by dissipation and unbalanced beam splitting.
arXiv:1507.08587 [quant-ph], Jul 2015.
http ]
[2] Karol Bartkiewicz, Antonín Černoch, Karel Lemr, and Adam Miranowicz.
Priority choice experimental two-qubit tomography: Measuring one by
one all elements of density matrices.
arXiv:1506.01317 [quant-ph], Jun 2015.
http ]
[3] Karel Lemr, Karol Bartkiewicz, and Antonín Černoch.
Scheme for a linear-optical controlled-phase gate with programmable
phase shift.
arXiv:1503.06187 [quant-ph], Mar 2015.
http ]
[4] Karol Bartkiewicz, Antonín Černoch, Karel Lemr, Adam Miranowicz, and
Franco Nori.
Experimental temporal steering and security of quantum key
distribution with mutually-unbiased bases.
arXiv:1503.00612 [quant-ph], Mar 2015.
http ]
[5] Karel Lemr, Karol Bartkiewicz, Antonín Černoch, Miloslav Dušek, and
Jan Soubusta.
Experimental implementation of optimal linear-optical
controlled-unitary gates.
Phys. Rev. Lett., 114:153602, Apr 2015.
DOI | http ]
[6] Adam Miranowicz, Karol Bartkiewicz, Anirban Pathak, Jan Peřina Jr.,
Yueh-Nan Chen, and Franco Nori.
Statistical mixtures of states can be more quantum than their
superpositions: Comparison of nonclassicality measures for single-qubit
states.
Phys. Rev. A, 91:042309, Apr 2015.
DOI | http ]
[7] Karol Bartkiewicz, Jiří Beran, Karel Lemr, Micha Norek, and Adam
Miranowicz.
Quantifying entanglement of a two-qubit system via measurable and
invariant moments of its partially transposed density matrix.
Phys. Rev. A, 91:022323, Feb 2015.
DOI | http ]
[8] Karol Bartkiewicz, Antonín Černoch, Dalibor Javůrek, Karel Lemr,
Jan Soubusta, and Jiří Svozilík.
One-state vector formalism for the evolution of a quantum state
through nested mach-zehnder interferometers.
Phys. Rev. A, 91:012103, Jan 2015.
DOI | http ]
[9] Adam Miranowicz, Karol Bartkiewicz, Jan Peřina Jr., Masato Koashi, Nobuyuki
Imoto, and Franco Nori.
Optimal two-qubit tomography based on local and global measurements:
Maximal robustness against errors as described by condition numbers.
Phys. Rev. A, 90:062123, Dec 2014.
DOI | http ]
[10] Karol Bartkiewicz, Pawe Horodecki, Karel Lemr, Adam Miranowicz, and Karol
Życzkowski.
Method for universal detection of two-photon polarization
entanglement.
Phys. Rev. A, 91:032315, Mar 2015.
DOI | http ]
[11] Karol Bartkiewicz, Antonín Černoch, and Karel Lemr.
Using quantum routers to implement quantum message authentication and
bell-state manipulation.
Phys. Rev. A, 90:022335, Aug 2014.
DOI | http ]
[12] Karol Bartkiewicz, Antonín Černoch, Karel Lemr, Jan Soubusta, and
Magdalena Stobińska.
Efficient amplification of photonic qubits by optimal quantum
cloning.
Phys. Rev. A, 89:062322, Jun 2014.
DOI | http ]
[13] K. Tsuchiya, N. Kirilov, Karol Bartkiewicz, S. V. Ershov, S. G. Pozdnyakov, and
A. G. Voloboy.
Influence of agglutination on appearance of ink on white paper, Nov
2010.
Optics & Photonics Japan 2010, Nov 8-10, Postdeadline issue, pp.
14-15.
http ]
[14] Karol Bartkiewicz, Antonín Černoch, and Karel Lemr.
State-dependent linear-optical qubit amplifier.
Phys. Rev. A, 88:062304, Dec 2013.
DOI | http ]
[15] Karol Bartkiewicz, Karel Lemr, and Adam Miranowicz.
Direct method for measuring of purity, superfidelity, and subfidelity
of photonic two-qubit mixed states.
Phys. Rev. A, 88:052104, Nov 2013.
DOI | http ]
[16] Karol Bartkiewicz, Bohdan Horst, Karel Lemr, and Adam Miranowicz.
Entanglement estimation from bell inequality violation.
Phys. Rev. A, 88:052105, Nov 2013.
DOI | http ]
[17] Evan Meyer-Scott, Marek Bula, Karol Bartkiewicz, Antonín Černoch, Jan
Soubusta, Thomas Jennewein, and Karel Lemr.
Entanglement-based linear-optical qubit amplifier.
Phys. Rev. A, 88:012327, Jul 2013.
DOI | http ]
[18] Karel Lemr, Karol Bartkiewicz, Antonín Černoch, and Jan Soubusta.
Resource-efficient linear-optical quantum router.
Phys. Rev. A, 87:062333, Jun 2013.
DOI | http ]
[19] Karol Bartkiewicz, Karel Lemr, Antonín Černoch, and Jan Soubusta.
Measuring nonclassical correlations of two-photon states.
Phys. Rev. A, 87:062102, Jun 2013.
DOI | http ]
[20] Bohdan Horst, Karol Bartkiewicz, and Adam Miranowicz.
Two-qubit mixed states more entangled than pure states: Comparison of
the relative entropy of entanglement for a given nonlocality.
Phys. Rev. A, 87:042108, Apr 2013.
DOI | http ]
[21] Marek Bula, Karol Bartkiewicz, Antonín Černoch, and Karel Lemr.
Entanglement-assisted scheme for nondemolition detection of the
presence of a single photon.
Phys. Rev. A, 87:033826, Mar 2013.
DOI | http ]
[22] Karol Bartkiewicz, Karel Lemr, Antonín Černoch, Jan Soubusta, and Adam
Miranowicz.
Experimental eavesdropping based on optimal quantum cloning.
Phys. Rev. Lett., 110:173601, Apr 2013.
DOI | http ]
[23] Karel Lemr, Karol Bartkiewicz, Antonín Černoch, Jan Soubusta, and Adam
Miranowicz.
Experimental linear-optical implementation of a multifunctional
optimal qubit cloner.
Phys. Rev. A, 85:050307, May 2012.
DOI | http ]
[24] Karol Bartkiewicz and Adam Miranowicz.
Optimal cloning of arbitrary mirror-symmetric distributions on the
Bloch sphere: a proposal for practical photonic realization.
Physica Scripta, 2012(T147):014003, 2012.
http ]
[25] Karol Bartkiewicz and Adam Miranowicz.
Optimal cloning of qubits given by an arbitrary axisymmetric
distribution on the Bloch sphere.
Phys. Rev. A, 82:042330, Oct 2010.
DOI | http ]
[26] Karol Bartkiewicz, Adam Miranowicz, and Sahin Kaya Özdemir.
Optimal mirror phase-covariant cloning.
Phys. Rev. A, 80:032306, Sep 2009.
DOI | http ]
[27] Sahin Kaya Özdemir, Karol Bartkiewicz, Yu-xi Liu, and Adam Miranowicz.
Teleportation of qubit states through dissipative channels:
Conditions for surpassing the no-cloning limit.
Phys. Rev. A, 76:042325, Oct 2007.
DOI | http ]