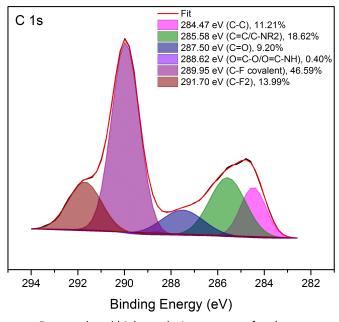
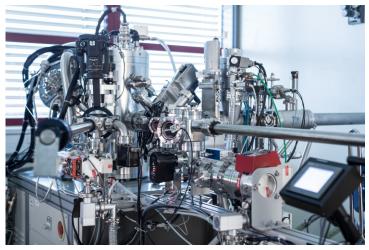
X-RAY PHOTOELECTRON SPECTROSCOPY

PHI 5000 VERSAPROBE II, PHYSICAL ELECTRONICS


X-Ray Photoelectron Spectroscopy (XPS) is an advanced non-destructive technique for investigation the chemical composition of surfaces (so-called ESCA – electron spectroscopy for chemical analysis). It has powerful and unique ability to explore the first few atomic layers of studied materials and assign chemical states to the detected atoms.

ACQUIRED INFORMATION


- Determination and quantification of chemical composition of surfaces (max. depth 10 nm)
- > Determination of valence states of atoms
- Chemical composition depending on the depth (depth chemical concentration)

SAMPLE TYPES

- > Bulk or powder solid materials
- > Thin films
- Liquids and solutions are possible in dried or in frozen state
- > Maximum sample size:
 - o Diameter 60 mm/thickness 8 mm
 - o Diameter 25 mm/thickness 13 mm

Deconvoluted high resolution spectra of carbon (C1s peak)

X-Ray photoelectron spectroscopy (PHI 5000 VersaProbe II, Physical Electronics)

MODES, CONDITIONS AND PRECISION

- > Monochromatic Al K_α X-ray source
- > Energy resolution on Ag 3d_{5/2} peak: 0.5 eV
- > Analyzed area geometry:
 - o Spots from 9 μm to 200 μm
 - o Lines
 - o Areas (mapping) up to 1 x 1 mm
- Depth profiling:
 - o Sputtering (destructive) up to 10 μm
 - o Angle resolved XPS (non-destructive) up to 10 nm
- > Dual beam charge compensation system
- > Flow through high pressure reactor:
 - o From 25 °C to 650 °C, gas pressure up to 20 bar, gases: N₂, Ar, O₂, CO, CO₂ and H₂
- > Hot/Cold sample handling (-120 °C up to 500 °C)
- Possibility of sample transfer under vacuum or inert gas from another instrument or glove box

DETAILED INFORMATION ON REQUEST

