Nanomaterials in biomedicine

About us

The research of the group Bio-Med is aimed on two overlapping fields: synthesis of novel nanomaterials and their consecutive application in biological and medicinal branches. Synthetic part of the group has a long time history in a design and synthesis of nanomaterials based on metals (iron, silver, gold, platinum) or their respective oxides. The resulting form of nanomaterials includes nanocomposites, nanoalloys as well as core-shell structures. Our infrastructure allows a characterization of nanomaterials using microscopic techniques as well as a study of interactions of selected nanomaterials with living systems on cellular level and on animals. Application part of the group specializes in a development of diverse analytical procedures applicable in medicinal diagnostics, environmental chemistry or toxicology or design of novel contrast agents applicable in MRI.

Group News

Research Areas:

Synthesis and modifications of nanomaterials

The synthetic group sub-division is focused on a development of procedures applicable in a synthesis of various nanomaterials with interesting properties applicable in biological systems.

Fundamental research in the field of chemical synthesis can be divided into several classes:

  1. Metal nanoparticles
  2. Magnetic iron oxides
  3. Nanocomposites
  4. Carbon – based nanomaterials
  5. Polymer-based micelles

The group possesses an infrastructure capable to perform targeted studies of the behavior of prepared nanomaterial in particular applications. Metal nanoparticles are further studied as potential nanocatalysts or antimicrobial agents. Magnetic iron oxides are studied as vesicles for a targeted drug delivery and contrast agents in MRI, nanocomposites are studied as substrates for Raman spectroscopy and electrochemical sensing. We understand that utilization of as-prepared nanomaterials in biological systems requires complex study of their respective toxicity. This important task is being performed by a particular group sub-division, where interactions of prepared nanomaterials with biological systems on a cellular and molecular levels are complexly studied. This includes MTT testing, analysis using Raman spectroscopy and atomic force microscopy, and analysis of ROS. Utilization of AFM and Raman spectroscopy is usually performed in liquid phase to model conditions closer to ones find in targeted biological systems.

Development of sensors based on Raman spectroscopy and electrochemistry

Analytical group sub-division is focused on a development of analytical platforms for analysis of numerous physiologically active compounds, where many of them can be potentially studied as biomarkers.

This includes for example dopamine, DNA, human IgG and others. The development of analytical procedures is being performed:

  1. Using electrochemistry, where magnetic iron oxides, nanocomposites or carbon-based nanomaterials are utilized as active substrates.
  2. Using surface enhanced Raman spectroscopy, where metal nanoparticles or noble metal containing magnetic nanocomposites are used.

The group also specializes on a complex functionalization of respective nanomaterials to enhance their analytical responses in particular applications. This includes anchoring of antibodies, selective enzymes, low-molecular selectors, nucleic acids or oligonucleotides.

Results highlights – Publications:

A. Sitt, J. Soukupova, D. Miller, D. Verdi, R. Zboril, H. Hess, J. Lahann: Microscale Rockets and Picoliter Containers Engineered from Electrospun Polymeric Microtubes, SMALL, vol. 12, iss. 11, pp. 1432-1439, 2016.
DOI: 10.1002/smll.201503467, IF = 8.368
K. J. Datta, M. B. Gawande, K. K. R. Datta, V. Ranc, J. Pechousek, M. Krizek, J. Tucek, R. Kale, P. Pospisil, R. S. Varma, T. Asefa, G. Zoppellaro, R. Zboril: Micro–mesoporous iron oxides with record efficiency for the decomposition of hydrogen peroxide: morphology driven catalysis for the degradation of organic contaminants, J. MATER. CHEM. A vol. 4, iss. 2, pp. 596-604, 2016.
DOI: 10.1039/c5ta08386a, IF = 7.443
V. Urbanova, F. Karlicky, A. Matej, F. Sembera, Z. Janousek, J. A. Perman, V. Ranc, K. Cepe, J. Michl, M. Otyepka, R. Zboril: Fluorinated graphenes as advanced biosensors - Effect of fluorine coverage on electron transfer properties and adsorption of biomolecules, NANOSCALE, Advance Article, 2016.
DOI: 10.1039/c6nr00353b, IF = 7.394
M. Havrdova, K. Hola, J. Skopalik, K. Tomankova, M. Petr, K. Cepe, K. Polakova, J. Tucek, A. B. Bourlinos, R. Zboril: Toxicity of carbon dots – Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle, CARBON vol. 99, pp. 238-248, 2016.
DOI: 10.1016/j.carbon.2015.12.027, IF = 6.196
V. Urbanová, K. Holá, A. B. Bourlinos, K. Čépe, A. Ambrosi, A. H. Loo, M. Pumera, F. Karlický, M. Otyepka, R. Zbořil: Thiofluorographene-Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties, ADV. MATER., vol. 27, iss. 14, pp. 2305-2310, 2015.
DOI: 10.1002/adma.201500094, IF = 15.409
M. Magro, D. Baratella, P. Jakubec, G. Zoppellaro, J. Tucek, C. Aparicio, R. Venerando, G. Sartori, F. Francescato, F. Mion, N. Gabellini, R. Zboril, F. Vianello: Triggering Mechanism for DNA Electrical Conductivity: Reversible Electron Transfer between DNA and Iron Oxide Nanoparticles, ADVANCED FUNCTIONAL MATERIALS, vol. 25, iss. 12, pp. 1822-1831, 2015.
DOI: 10.1002/adfm.201404372, IF = 10.4
K. Hola, Y. Zhang, Y. Wang, E. P. Giannelis, R. Zboril and A. L. Rogach: "Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics", NANO TODAY, 2014.
DOI: 10.1016/j.nantod.2014.09.004, IF = 18.432
V. Urbanova, M. Magro, A. Gedanken, D. Baratella, F. Vianello and R. Zboril: "Nanocrystalline Iron Oxides, Composites, and Related Materials as a Platform for Electrochemical, Magnetic, and Chemical Biosensors", CHEM. MATER., vol. 26, iss. 23, pp. 6653-6673, 2014.
DOI: 10.1021/cm500364x, IF = 8.535
A. Panacek, R. Prucek, J. Hrbac, T. Nevecna, J. Steffkova, R. Zboril and L. Kvitek: "Polyacrylate-Assisted Size Control of Silver Nanoparticles and Their Catalytic Activity", CHEM. MATER., vol. 26, iss. 3, pp. 1332-1339, 2014.
DOI: 10.1021/cm400635z, IF = 8.535
K. Hola, A. Bourlinos, O. Kozak, K. Berka, K. Siskova, M. Havrdova, J. Tucek, K. Safarova, M. Otyepka, E. Giannelis and R. Zboril: "Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO− induced red-shift emission", CARBON, vol. 70, pp. 279-286, 2014.
DOI: 10.1016/j.carbon.2014.01.008, IF = 6.160
V. Ranc, Z. Markova, M. Hajduch, R. Prucek, L. Kvitek, J. Kaslik, K. Safarova and R. Zboril: " Magnetically Assisted Surface-Enhanced Raman Scattering Selective Determination of Dopamine in an Artificial Cerebrospinal Fluid and a Mouse Striatum Using Fe 3 O 4 /Ag Nanocomposite ", ANAL. CHEM., vol. 86, iss. 6, pp. 2939-2946, 2014.
DOI: 10.1021/ac500394g, IF = 5.825

Key Collaborators

Asst. Prof. Martin Pumera

  • He received his PhD at Charles University, Czech Republic, in 2001.
  • Currently works at Nanyang Assistant Professor at School of Physical and Mathematical Sciences, CBC, NTU.

Research areas:

  • lab on chip devices
  • nanomaterial-based electrochemical biosensors

Prof. Fabio Vianello

  • He received his PhD at the University of Padova, in 1993
  • Currently works as Associate Professor of biophysics and biochemistry at the Department of Comparative Biomedicine and Food Science

Research interests:

  • purification and the characterization of kinases and amine oxidases and in the biotechnological application of purified enzymes in the development of amperometric and potentiometric biosensors.
  • application of fluoride ion as nuclear probe in nuclear magnetic resonance in living systems and the generation and decay of free radicals both in vitro and in vivo.
  • electron transfer phenomena of low molecular weight metal complexes in biological systems.
  • application of nuclear magnetic spectroscopy to the evaluation of the viability of explanted organs and to the interaction between antioxidant molecules and free radicals in foods.
  • nanobiotechnology research and in the development of nanobiosensors and in the application of magnetic nanoparticles.

Dr. Clemens Diwoky

  • He received his PhD at the Graz University of Technology in 2014
  • Currently works as staff Scientist at Institute of Molecular Biosciences, University of Graz

Research interests:

  • Biomedical Engineering
  • Signal Processing
  • MRI
  • RF Engineering
  • Electrical Engineering

Dr. Aristides Bakandritsos

  • He received his PhD at the Chemistry Department of the National and Kapodistrian University of Athens in 2006
  • Currently works at University of Patras, Rio, Greece

Research interests

  • Bottom up synthesis of hybrid (organic/inorganic) nanocolloids through self-assembly and "grafting-to" techniques.
  • Physicochemical functionalization of their surface with small molecules, biopolymers and synthetic macromolecules of various architecture.
  • Study of magnetic and colloidal properties and interactions with molecules of biological interestStudy of structure-property relationships and optimization towards their applications as therapeutic nanoplatforms
  • Self-assembled swellable phyllomorphic materials and their composites with organic (porous carbons, carbon nanotubes) or inorganic materials (nanoparti-culate metals and metal oxides).

Dr. Stefan Vajda

  • He received his PhD at Charles University Prague in 1990.
  • Currently works at Argonne National Laboratory, Chemistry Division, Argonne, Illinois, USA

Research interests

  • Physical and chemical properties of supported size-selected metal clusters and cluster-based nanomaterials
  • Synchrotron X-ray studies of the thermal stability and kinetics of nanoparticle growth
  • Surface composition and morphology effects on nanoparticle properties
  • Controlled assembly; Optical properties; Nanocatalysis.

Senior researchers

Doc. RNDr. Libor Kvítek, PhD.

  • Associate professor

Research interests

  • heterogeneous systems – surface energy and wettability of solid surfaces, viscosity and surface tension of liquids and solutions
  • study of solutions of surface-active compounds and their micelles
  • electrochemistry of homogenenous and heterogeneous systems;
  • study of preparation, properties and application potential of nanoparticles of silver and other, especially noble metals.

Selected publications

CHEMISTRY OF MATERIALS (2014) 26, 3 1332-1339, MATERIALS CHEMISTRY AND PHYSICS (2013), 140, 2-3, JOURNAL OF PHYSICAL CHEMISTRY C (2008), 112, 15, 5825-5834.

Doc. RNDr. Aleš Panáček, Ph.D.

  • Associate professor

Research interests

  • Colloid silver: preparation, modification, study of stability, biological activity, and electric and optical properties
  • Transmission electron microscopy

Selected publications

CHEMISTRY OF MATERIALS (2014) 26, 3, 1332-1339, COLLOIDS AND SURFACES B-BIOINTERFACES (2013), 110, 191-198, BIOMATERIALS (2009), 30, 31, 6333-6340.

Ing. Veronika Urbanová, Ph.D.

  • Professor assistant

Research interests

  • Development of electrochemical sensors
  • Characterization of carbon nanomaterial using electrochemistry

Selected publications

ADV. MATER., (2015) 27, 14, 2305-2310, CHEM. MATER. (2014), 26, 23, 6653-6673, ANALYTICAL AND BIOANALYTICAL CHEMISTRY (2013), 405, 11, 3899-3906.

Group members

Adámková Šá 585 63 4384
Balzerová Anna Mgr.anna.balzerova@upol.czMaternity leave
Chaloupková 585 63 4390
Gybasová Soň
Havrdová MarkétaMgr.marketa.havrdova@upol.czMaternity leave
Holá Kateř
Hradilová ŠárkaMgr., 585 63 4384
Kvítek Libordoc., RNDr., 585 63 4420
Malina Tomáš 585 63 4484
Medříková ZdenkaMgr., Ph.D.zdenka.medrikova@upol.czMaternity leave
Opletalová ArianaMgr.ariana.fargasova@upol.czMaternity leave
Panáček Alešdoc.,RNDr., 585 63 4427
Poláková KateřinaMgr., 585 63 4950
Ranc VáclavRNDr., 585 63 4388
Soukupová JanaRNDr., 585 63 4425
Vianello FabioProf.,