TOP RCPTM journal publications 2019

registered by Web of Science, ordered by IF

I.S. Pieta, A. Rathi, P. Pieta, R. Nowakowski, M. Hołdynski, M. Pisarek, A. Kaminska, M.B.Gawande, R.Zboril: Electrocatalytic methanol oxidation over Cu, Ni and bimetallic Cu-Ni nanoparticles supported on graphitic carbon nitride, APPLIED CATALYSIS B: ENVIRONMENTAL vol. 244, pp. 272-283, 2018.
DOI: 10.1016/j.apcatb.2018.10.072, IF = 11.698

Abstract: Ni, Cu and Cu–Ni nanostructures have been fabricated and homogeneously embedded on ultrathin two-dimensional (2D) carbon nitride (g-C3N4), and the surface morphology and composition of the resulting hybrid nanostructures were studied by XRD, TEM, HRTEM-elemental mapping, Raman spectroscopy and XPS. The new hierarchical hetero-structures dropcasted on GC anodes have been visualised by SEM and their catalytic performance have been examined in methanol electrooxidation reaction (MOR) under alkaline conditions. Nanosized Ni particles dispersed finely over g-C3N4 are very active electrocatalysts with MOR onset at potential 0.35 V and charge transfer resistance 0.12 kΩ. The stability of modyfied GC electrodes, examined under chronoamperometric conditions showed that for electrode loading with 4% (wt. %) of NiO the stable current density ca. 36 A g−1 (12 A cm2) was obtained during whole experiment (up to 160 min). For all catalyst studied the curent density obtained during MOR reaction was enhanced when electrode was iluminated by UV light λ∼400 nm, and the highest value were obtained for 4% Ni/CN catalyst ca. 127 A g−1 (22 A cm2). The Cu incorporation in the hybrid material evoke loss of activity mostly due to Cu+ irreversible reduction/oxidation to Cu° and Cu2+, CuO segregation and influencing electron transfer process which results in the increasing in the redox potential. These results represent an important step towards light-enhanced electro-reactive systems and sensors in which heterojunction formation can facilitate electron-hole separation and enable more efficient energy transfer.

P.Štarha, J.Vančo, Z.Trávníček: Platinum iodido complexes: A comprehensive overview of anticancer activity and mechanisms of action, COORDINATION CHEMISTRY REVIEWS vol. 380, pp. 103-135, 2019.
DOI: 10.1016/j.ccr.2018.09.017, IF = 14.499

Abstract: Platinum iodido complexes have long been recognized as synthetic intermediates of various platinum complexes (e.g., chlorido or carboxylato), including the world-wide used platinum-based anticancer drugs cisplatin, carboplatin and oxaliplatin. At the same time, platinum iodido complexes have been overlooked by bioinorganic chemists, because several pioneer works deemed the iodido ligand as unsuitable for the development of novel platinum-based metallotherapeutics. This was because most of platinum iodido complexes were identified as biologically and pharmacologically non-prospective as compared with the chlorido analogues. More recently, several research teams have developed various types of platinum iodido complexes as substances possessing the combination of promising chemical, physical, and especially biological properties. In particular, a number of platinum iodido complexes showed higher activity than their chlorido analogues and they exceeded even the activity of the conventional platinum-based drugs. Additionally, a lot of results have implied that relevant differences exist in the mechanism of action between platinum iodido agents, and their chlorido analogues and clinically-used platinum complexes